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CALCULATION OF A HYPERSONIC VISCOUS GAS FLOW AROUND 
A SPHERE NEAR THE STAGNATION LINE 

B.M. Pavlov 

ABSTRACT: A steady hypersonic flow of a viscous heat- 
conducting compressible gas is considered on the basis of 
Navier-Stokes equations written in spherical polar coor- 
dinates. It is assumed that the gas is perfect and mon- 
atomic and that its volume viscosity is equal to zero, while 
the viscosity and heat-conductivity coefficients are pro- 
portional to the square root of the absolute temperature 
T. An approximate local self-similar solution is used, 
which makes it possible to obtain flow characteristics in 
the stagnation line region. A nonstationary system ob- 
tained by using an explicit difference scheme is integrat- 
ed numerically in the region from the undisturbed flow 
down to the body and passing through the shock-wave zone. 
As a result, the structures of the shock layer and shock 
wave are determined. The results are presented of anu- 
merical calculation of flow past a thermally insulated 
sphere at Mco = 10, y = 5/3, Pr = 3/4, with Re = 50, 100, 

500, and 1000 characterizing the transitio 
fied to a dense gas with gradual formation 
wave. Diagrams of pressure, velocity, and density dis- 
tributions are included. It is stated that the computation 
procedure outlined here may be used for calculations of 
plane as well as axisymmetrical bodies with nose section 
of nearly cyclindrical or spherical shape and with thermally 
insulated or cool surface. 

This paper uses the "developed flow" method for calculating steady state 
flow of viscous gas around a sphere. U made of an approximat 

olution, which makes it possibl btain flow characteris- 
tion line. An explicit differenc me is used to integrate 

the nonstationary system in a region extending from the undisturbed flow and up 
to the body with transition through a shock-wave zone; no assumptions are made 
here regarding the behavior of the flow in this region. The structure of theshock 
layer ahead of the sphere, including the shock-wave structure, is determined as 
a result. 

*Numbers in the margin indicate pagination in the foreign text. 
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Examples of calculations are  presented for flow around a thermally-insu- 
lated sphere at Ma= 10, and Reynolds numbers 50, 100, 500 and 1000. 

1. Statement of the Problem 

We are considering the calculation of steady-state flow around a sphere in 
a homogeneous hypersonic flow of viscous, thermally-conducting, compressible 
gas. The starting e problem are Navier-Stokes equations writ-  
ten in spherical pol ee, for example [l]). It is assumed that the 
gas is perfect and m hich the volume [bulk] viscosity is zero, while 
the viscosity p and the thermal conductivity k are proportional to the square root 
of T, (the absolute temperature). The ratio of specific heats y = c /c and the 
Prandtl number Pr = c p/k are assumed to be constant. As a result we  have a 
closed system of equations with respect to the following desired functions: u, v 
which are  the radial and tangential components of the velocity, p - the density, 
p - the pressure, h = c T - the enthalpy and p - the viscosity. 

P V  
P 

P 

onditions of the problem are 
(Fig. 1) and the conditions in of a s 

We assume that the conditions on the sphere surface assure flow adhesion 
to that surface: 

- I 

(rw, 0) = 0, v(rw, 0) = 0 

We also assume that the sphe 

For the case of very small Reynolds numbers (when the gas is sufficiently rare- 
continuous-medium hypothesis is still valid) conditions (1) and (2) 
laced by slip and temperature jump conditions. 

Since it is assumed that the flow far from the body is homogeneous and uh- 
disturbed, we have the following conditions at r - +- ~0 

The boundary-value problem for complete Navier-Stokes equation 
in this manner can be solved numerically only with extreme difficulty. 
follow an approximate method for solving this problem suggested by Probstein 
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and Kemp I l l .  According to this m 
sonic flow in the shock layer ahead 

which passes only through the for- 
ward stagnation point on the body. 

The following form of the local 
self-similar solution was used when 
changing to ordinary differential equa- 
tions 

, 
1 u (r, 0) = u,(r)cos 8,.u(r, 0) 

I I h (r ,  0) = h, ( r )  cos2 8, p (r, 0) = p, (r)  cos 0, 

p4 ( r )  cos' 0 + po ( r )  sin2 8. (4) 

According to [4], this form of solution in the series expansion of the flow param- 
eters near axis with 0 = 0 in powers of sine corresponds to the so-called "first 
cutoff. " 

The system of ordinary differential equations derived in [Z] has the form 

I 

- 

1 

d; . 4 2 -  _----  
d; a 3Re dr 

4 - d$ 

3Re dr 
V Y .  -- 

1 d 
Re d; 

-= - - -  

System (5) is completed by wr i t i  
enthalpy and viscosity 

elationships for the pressure, 
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The system described by Eqs. (5) and (6) is written in dimensionless variables, 
which are defined as follows 

p = Po, h - = -, ho - t’“ pI, * 
FW h W  P W  

It should be noted that the energy equation in Eqs. (5) and (6) is replaced by 
Becker’s integral + c2/2 = A, which is applicable when Pr = 3/4 and only for 
thermally insulated surfaces of the body. 

System (5)-(6) will  be 
spect to variable r, assumi 
not in practice extend past 

sphere. This is equivalent the possibility of applying conditions 
prevailing at infinity to a sphere with radius roo‘ 

rically over a finite interval with re- 
sturbances produced by the body do 

distance roofrom the center of the 

The dimensionless boundary conditions (1)-(3) have the form 

In addition, by virtue of Becker’s integral and of the method used for transfor- 
mation to dimensionless quantities, we  obtain at the surface of the body 

Since the velocity field at infinite distance from the body is homogeneous and 
there are no rates of deformation of the flow to be considered, we can use the 
formulas for an ideal inviscid gas for the undisturbed incident flow: 
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region and in the b 
separated by a regi 

analysis performed in [11-[4] 

should be no 

In this paper, as in [2] we integrate directly while assuming transition 
through the shock-wave zone. However, w e  make no assumptions as to the be- 
havior of the flow between the undisturbed flow and the body. The numerical 
computation presented here makes it possible to overcome difficulties encount- 
ered in the Levinsky-Yoshihara paper. 
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2. The Numerical Solution 

The problem formulated in Sec. 1 is a two-point boundary-value problem 
for a nonlinear system of ordinary differential equations. It was solved in [2] 
by direct integration assuming transition through a shock wave. However, the 
solution involved great difficulties due to instability of the integration process, 
which was performed only in one direction, i. e., from the undisturbed flow to 
the body, or  conversely. Hence it was necessary to integrate Eqs. (5)-(6) sim- 

g the flow and against it, starting from 
and from the body. Then both solu- 

een the body and the shock wave by se- 
of the integration origins. 

Paper 141 points out the cause of the instability operating during integration 
in the direction of the flow: the differential equations which describe the shock- 
wave structure have a singular point (a saddle point) directly behind the wave. 
It was  noted that this disappears with a reduction in Re (for example, when Re = 

to the surface of the body be- 
origin was at the body, an in- 

int integration a1 

ch to the shock wave. The se- 
integration origins and the sub- 
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ethod for solving this boundary-value 
coupling of solutions and laborious 

add to the differential equations of system 

n the unsteady Navier-Stokes system) and 

ons at t = 0 and with boun 
re exists a sin 

p2, with respect to time t (this time /73 - 
is not the same as 

m 

state flow parameter 

to (5)-(6) has the for 

P($ +us>=, 1 - a , ( l i ~ ) - ~ t P * - P ~ - v v ( u + u ) . :  a0 
t 
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This system will be solved by the method of finite differencesinthe region 
f independent variables (r, t) 

a1 points are denoted by c. t = nn; m = 0, 1, ..., k, n = O ,  1, 2, ..., wher 

(12)-(15), we  use an explicit differ- 
. -  

- _ _  .. __ - - -  

urn %+I = u R m ~ - € d r ( ~ m + l - ~ m - j )  U 
"ai-1 + 

1 
I I + -$- (29 10.5 (p:+! -+ GI - u:,) - j 

I 
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ThenTn41 are calculated in the opposite direction from the expressions m 

and p are found from Eqs. (16)-(18). The final The values of hm, pm m 
solution at the (n + 1)th time-dependent film is given by 

This difference scheme was applied in [6] to a nodal equation 



where a and v are con 
tinuous derivatives up 
is a quantity of the order 

and all the time deriva- n + l -  n while for steady-state conditions, i. e. , when 
tives are zero, the e r ror  will be of the order 

The stability condition for this explicit system has the form 

tem it can be shown that the approximation wil l  be of the same 

using a system of linearized equations with "frozen" coefficients, corresponding 
to (12)-(18), which describes the flow variables in regions where they vary slowly. 
The stability condition for the linearized system thus obtained is similar to con- 
dition (29) for one equation. 

steady regime. Stability was studied by the Fourier method 

However, this condition was  not always suitable for calculations, since the 
shock layer has regions with extremely variable flow parameters, and hence the 
spacing 7 had to be made smaller than would follow from the stability condition. 
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Detailed calculations performed for this problem showed that this scheme 
results in the appearance of fluctuations which increase slowly with time, which, 
after a very large number of time-dependent layers could entirely distort the so- 
lution. To eliminate these fluctuations, smoothing was carried out in each time- 
dependent layer using the expression 

where 0 5 6 c= 0.25. Since this kind of smoothing is similar to the appearance 
of some fictitious viscosity, then, in order not to distort the true solution by 
this viscosity, we  must require that 

. .- . .. . . . 
i 
' E  

-< __ 
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After smoothing was  performed *he fluctuations were eliminated and establish- 
ment of the steady-state ("developed flow") was  observed, 

show ho nitial conditions are specified fo 0 (n = 0, m =1, 

3. Results of Calculations 

Calculations were performed for flow around a thermally-insulated sphere 
for Mw = 10, y = 5/3, Pr = 3/4 for Reynolds numbers equal to 50, 100, 500 and 
1000, which characterize transition from a rarefied to a dense ga adual 
formation of a thin shock wave. 

Before starting calculations we  specify so 
-- - 

greater than two sp 
points on the time- 
the stability conditio 
parameter, from Eq. 

~- 

r 6 = uv -, 0<6,<0,25~ 
t 

1 
i 

Then the selected k /79 

eady-state solution 
- 

is corrected and the problem is solved again, bu 
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for the former value of g is taken as the initial conditions at t = 0. The process 
of selection of g converges quite rapidly. 

The external boundary rcO of the integration region should be selected so 
that, on one hand, the desired functions would fi t  well with their asymptotic val- 
ues in the incident flow, while on the other hand, rcO should not be too large be- 

cause otherwise, for a given number of nodal points on the layer, the accuracy 

significant figures it is sufficient to take 20 nodal points along r. 

After selecting the maximum interval 7 (which was found to be of the or- 
rmits stable calculations for E = v, it is necessary to reduce 
llations appear near the steady-state solution. The calcula- 

on with the smallest value of e' for which these oscillations do not appear is as- 
sumed as final. The exactness of solution was  checked by com 

the same values of rcO and 
in Figs. 2 and 3. 

ined with intervals I and Z 
numerical calculations are s 

Figure 2a shows the s 
with a decrease in-lti, the gr 
appear on further reduction 
calculations: ra, = 1.42 (k = = 1.60 (k = 20) and rcO = 1.84 (k = 40). For 

= 1.84 velocity u becomes equal to its asymptotic value in the incident flow Tal 

practically for r = 1.55 and for rcO = 1.42 function u does not approach the asymp- 
tote at all. The value r = 1.60 can be regarded as the outside boundary of the 

as  a function of E. It can be see 
smoothed out less, and that fluc 

re 2b presents graphs of u for 

n. Figure 3 illustrates the "development" of pu(t) for different 

teady solutions are depicted in graphs of Figs. 4-9. Figures 
4 and 5 give functions u and p for all the calculated Re. These graphs describe 
the structure of the shock layer and of the shock wave. It can be seen how the 
shock wave zone is gradually thinned out with an increase in Re, Figures 6-9 
depict u, v, p and p2 as functions of r. For Re = 50 reference should not be 

made to a shock wave as such, when Re = 100 the shock wave is highly washed 
out and blends with the boundary layer at the body, when Re = 500 it is already 
possible to discern a region of inviscid flow inside the shock layer, while for 
Re = 1000 the inviscid zone comprises a large part of the shock layer (on the 
graphs u and v in this zone are almost linear). The circles in Figs, 7 and 9 
denote solutions obtained by Levinsky and Yoshihara. The qualitative agree- 
ment is satisfacto 
ference in corresp g values of Rec0. A sharp increase in the density near ~ - 

the body is observed when Re = 50 (Fig. 5). Possibly this may 
to the fact that we have not considered slip at such a low Reynol 
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2 hile the slight deviation may well be attributed to the dif- - 
le 
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Setting of pu(t). 
Velocity u for Different 

Reynolds Numbers. 

P 
P e to perform ca 
ition from the undistur 
This method is suitable also for calculations for plane as well as axisymmetric 
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